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Abstract

The main eigenvalues of a graph G are the eigenvalues of its (0, 1)-adjacency matrix hav-
ing some corresponding eigenvector not orthogonal to the all-ones vector j = (1,...,1).
In this dissertation, the relationship between the main eigenvalues of a graph and the
number of walks is discussed. The number of walks Ny of length k£ in the graph G is
expressed solely in terms of the main eigenvalues and main angles of G. The walk matri-
ces of two comain non-isomorphic graphs with the same main eigenspace are shown to
be of the same column space. Moreover, various properties of graphs relating the main
eigenvalues, eigenspaces, eigenvectors and canonical double covers are catergorised in a

hierarchical form.
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CHAPTER O

Preface

A graph is a network of abstract objects called vertices in which some pairs are related:
such pairs are called edges. Pictorially, the vertices are represented by dots, and edges
are represented by lines joining those dots. A graph with n vertices can be represented
algebraically using an n X n matrix, where the ¢th row and jth column contains a 1
entry if vertex ¢ is connected to vertex j, and a 0 entry if they are not connected. This

is called the adjacency matrix.

In applications, graphs are abstract representations of structures in which items are
connected. Social networking sites, such as Facebook, make use of graphs to represent
“friends” (vertices) and “friendships” (edges). Problems of finding “mutual friends”, for
example, make use of graph theoretic results. Graphs are also fundamental to the effec-
tiveness of Google’s PageRank algorithm, which determines the order in which results
appear in a Google search. In this context, vertices represent different webpages, and
two webpages are connected if one links to the other. A walk in such a graph corresponds
to starting from one webpage, and clicking links to travel to others. If a large number
of walks end in a particular webpage, then that webpage is “popular” so it is promoted

more than others.

Historically, graph theory was first conceived when Leonhard Euler released a paper on
the Konigsberg bridge problem in 1736, which led to his formula relating edges, vertices
and faces of convex polyhedra. This paper is often pointed to as the birth of graph
theory and topology.

Spectral graph theory is the study of graphs from a linear algebraic point of view. The
subject explores the relation of the graph with the characteristic polynomial, eigenvalues
and eigenvectors of its adjacency matrix. Since adjacency matrices are (0, 1)-real sym-

metric matrices, a number of facts from linear algebra can be tailored more specifically
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FIGURE 1: Illustration of the Konigsberg bridge puzzle!'"]

to graphs, and this often results in significant strengthening of results.

Spectral graph theory emerged in the mid-twentieth century. The monograph by Cve-
tovié¢, Doob and Sachs, Spectra of Graphs (1980), summarises a large portion of the

important results in this area.[’]



CHAPTER 1

Introduction

“We can only see a short distance ahead,
but we can see plenty there that needs to be

done.”
ALAN TURING
In this chapter, we establish some basic notation and terminology that will be used
throughout and state some rudimentary results, before giving an overview of the struc-

ture of the document.

1.1 Basic Terminology

Unless stated otherwise, small letters such as x, f or ¢ denote functions or elements
(members) of a set, ordinary capital letters such as V, E or Q denote sets, sans-serif
capital letters such as G or P denote the names of graphs, small letters in bold font such

as x or v denote vectors, and capitalised bold letters such as A or M denote matrices.

The set of positive integers {1,2,3,...} is denoted by the symbol IN, and for any n € IN
the subset {m € IN: m < n} = {1,...,n} is denoted by [n]. For any set A, we denote
the cardinality by |A|, and the power set {X : X C A} by £A. For any finite set A,
we denote the set {X € A : |X| = k} of all k-element subsets by (2‘) The Cartesian
product of k sets Ay, Ao, ..., A is denoted Ay X --- X A or Hle A;, and if A; = A for
all i =1,...,k, then we simply write A*.

A function f with domain A and codomain B is written as f: A — B. If X C A, the
restriction of f to X is a function with domain X and codomain B, is denoted f [ X,
and is defined by (f [ X)(z) = f(z) for x € X.

A (simple) graph G is a pair of sets (V, E) where V is finite, and E C (‘2/), that is, F is
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FIGURE 1.1: Three equivalent representations of the graph G

some subset of unordered pairs from V. The elements of V are called vertices or nodes,
and the pairs in E are called edges. We sometimes denote the sets V and E by V(G)
and F(G), to show that they belong to the graph G. Typically, we take V' = [n] for some
n € IN.

Ezample 1.1. Consider the graph G where V(G) = [5], and

E(G) = {{1,2},{1,3},{2,3},{2,4},{3,4},{4,5}}.

These two sets define a graph. The reason we call this pair of sets a ‘graph’ is because
we like to associate with them a graphical representation consisting of dots (represent-
ing vertices in V') connected by lines (which represent the edges in E), as depicted in

figure 1.1. Note that many such representations are possible.

Unless stated otherwise, the number of vertices |V(G)| of a graph G will be denoted by
the letter n, and the number of edges |E(G)| by the letter m.

Given a vertex v € V in a graph G, the set of neighbours of v, denoted Ng(v) or just
N (v), is the set
N@w)={ueV:{uv} e E}

of vertices joined to v by an edge. The number |N(v)| of neighbours of v € V is the
degree of v in G, denoted degg(v) or simply deg(v).

Two graphs G and H are isomorphic, written G ~ H, if H is simply G with its vertices
relabelled; i.e., if there exists a bijection 7: V/(G) — V(H) such that V(H) = {n(v) : v €
V(G)} and

E(H) = {{r(u),w(v)} : {u,v} € E(G)}.

A k-walk or walk of length k in a graph G is a (k+1)-tuple (vo, ..., vx) € VF+! such that
{vi—1,v;} € Eforall 1 <i <k, and a walk in G is simply any k-walk in G. For example,
(1,2,3,4) and (1,2,3,2,1) are walks in the graph of figure 1.1, whereas (1,2, 3,5) is not

a walk. We also use the terminology “a walk from vy to v” to describe (vy,...,vg).
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A walk (vg,...,vx) is said to be a path if in addition to being a walk, we have that

vg, - - -, U are all distinct.

A subgraph of a graph G is a graph H such that V(H) C V(G) and E(H) C E(G). Given
any subset U C V(G), then the induced subgraph on the vertices of U is the subgraph H
with V(H) = U and E(H) = E(G) N (g) This subgraph H is usually denoted G[U] or
G|U.

A graph is said to be connected if for every pair of vertices {u,v} € (g), there is a
walk from u to v. Otherwise, we say the graph is disconnected. The largest subgraphs
of a disconnected graph (with respect to number of vertices) which are connected are
called the components of that graph. If a graph G has a k-walk (vg,--- ,v) such that
all vg,...,vp_1 are distinct and vg = vg, then this walk is said to be a k-cycle or simply

a cycle. If k is odd or even, we use the terminology odd (even) cycle.

A graph is said to be bipartite if its vertex set V' can be split as V = Vi U Vo, where
we call V1 and V, the partite sets, such that Vi N'Ve = (), and for all {u,v} € E, either
u€eViand v € Vo or u € Vo and v € V4. In other words, the vertex set V can be split
into two disjoint sets such that all edges in the graph are from one of these sets to the

other.

We denote vectors in R™ using the usual notation v = (v;) or (v;),, where v;: [n] = R
denotes the general ith entry, and similarly for matrices we write A = (ai;) (or (@ij)mxn
when we wish to emphasise the dimensions), where a;; is the entry in the ith row and
jth column, i.e., the ijth entry. The ith entry of a vector v € R™ can be accessed using

the notation [v];, and similarly the ijth entry of a matrix M is denoted by [M];;.

The all-ones vector (1,...,1) = (1), will be denoted by j, and the all-ones matrix (1), xn,

i.e., the n x n matrix with ones everywhere, will be denoted by J.

The adjacency matriz of a graph G, denoted A(G) or simply A when the context is

clear, is the symmetric n x n matrix (a;;), where

1 if {i,j} € E(G),

0 otherwise.

Qai5 =

We use terminology from linear algebra about a graph G in reference to its adjacency
matrix A. For example, the eigenvalues and eigenvectors of a graph G are respectively
those of the matrix A.
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If two graphs G and H have the same eigenvalues and multiplicities, then they are said

to be cospectral.

Let V be a finite dimensional vector space with dimension n. We denote the eigenspace
{veV:Av = \v} of amatrix A: V — V corresponding to the eigenvalue A by Ea (\)
or simply E(\). If A is the adjacency matrix of a graph G, we may also write Eg(\).

The n-cycle, denoted C,,, is the graph ([n],{{i,i +1} :i € [n— 1]} U{{n,1}}), and the
complete graph on n vertices, denoted K,, is the graph ([n], ([;L]))

Let G be a graph. The complement of G is another graph G with the same vertex

set V(G) = V(G), but complement edge set F(G) = (‘2/) ~ E(G). In other words,
{u,v} € E(G) if and only if {u,v} ¢ E(G), and vice-versa.

Let Gq,..., Gy be graphs. Then the sum or union of Gy, ..., Gy, denoted by Gy +- - -+ Gy,
or Zle G, is the graph G with vertex set V(G) = Ule V(G;) x {i} and edges E(G) =
UL {{(u,9), (v,3)} : {u,v} € E(G;)}. The sum 37, G of n copies of G with itself is
denoted by nG. Clearly if a graph G is disconnected and has components Gy, ..., Gg,
then G ~ Zle G;. If one of the components is isomorphic to Ky, then it is said to be

an isolated vertex.

1.2 Some Basic Results

In this section we give proofs for some very straightforward results which will be assumed

throughout the dissertation.

Proposition 1.2 (Handshaking Lemma). Let G = (V| E) be a graph. Then

> deg(v) = 2|E|.

veV
Proof. By definition, deg v counts the number of edges incident to the vertex v. Therefore
when summing all the degrees, each edge is counted once by each vertex to which it is
incident. But every edge is incident to precisely two vertices, so each edge is counted

twice, giving a total of 2|E)|. O

A more formal proof of the Handshaking lemma would involve expressing deg(v) in
terms of N(v) and interchanging summations. This is the so-called double counting

proof technique.
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Proposition 1.3. A graph is bipartite if and only if it contains no odd cycles.

Proof. Suppose a graph G contains an odd cycle (vo, ..., vor+1). If we try to partition
the vertices of G into two partite sets V7 and Vs, then we have to place adjacent vertices
in the cycle in separate sets. Without loss of generality, place vg, va,..., v, in Vi, and
V1,03, ..., V9k_1 in Va. But vor11 = v, SO we cannot place it in V; (since it is adjacent to
v9g) nor in Vo (since it is adjacent to v1). Thus V' cannot be partitioned, and therefore

G is not bipartite.

For the converse, first observe that if G is disconnected, and each component G, ..., Gy is
bipartite, each with partite sets Uy and Uy, Uz and U3, ..., Uy and U}, then U = Ule U;
and U’ = Ule U] gives partite sets for G. Thus, it suffices to prove the converse for a

connected graph.

Suppose G is connected and has no odd cycles. Pick a vertex v € V(G). Define Ny(v) =
{v}, Nir1(v) = Uyen(w) Ne(u), and consider the sets Vi = [Jg_o Nox(v) and Vo =
Uk—o Nok+1(v), where n = |V|. Clearly since G is connected, V3 UV, = V. Now suppose
two vertices u, w € V] are connected by an edge. Being in Vi, there are distinct integers
k,0 so that u € Nog(v) and w € Nog(v). Without loss of generality, say k < ¢. Then
by the construction of the sets V7 and Vs, there is a path (v = uog, usgt1,-- ., Uy = w)
where each u; € N;(v). But this path contains an odd number of vertices, and since u is

joined to w, we get an odd cycle, which contradicts the hypothesis.

Thus no two vertices in V7 can be joined by an edge, and similarly for V5. So G is
bipartite. O

Proposition 1.4. For any graph G, we have

AG) =T -1-A(G).
Proof. Let a;; = [A(C)]ij. Then the claim is a;; = 1—6;; —a;;, where §;; is the Kronecker
delta.! Clearly when {i,j} € E, the formula gives @;; = 0, whereas when {i, j} # E, it
gives a;; = 1, as desired. When i = j, {i,5} = {i} ¢ (‘2/), so we need the —d;; to make

the diagonal zero. O

165 = 1 if i = j, and 0 otherwise. This is the ijth entry of I.
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Proposition 1.5. Let Gy,...,Gg be graphs. Then

A(Gy) o)
A(G + - +Gy) =
o A(Gg)

Proof. We prove the case k = 2, the general case follows by induction. If G; has ny ver-
tices and Go has ng vertices, then G; 4+ Gy has nj +nsg vertices, labelled (1,1), ..., (n1,1),
(1,2),...,(n2,2) by definition. Clearly the adjacencies between (1,1),...,(n,1) are the
same as those of G1, and the adjacencies between (1,2), ..., (ng,2) are the same as those

of Gg. There is no edge of the form {(u, 1), (v,2)}. Hence the adjacency matrix is

AG 4 Gy) ( AG)| © ) |

O |A(Gy)

as required. O

1.3 Document Structure

In the first chapter, we give some preliminary results, mostly about linear algebra, which
the reader might not have come across in typical/standard treatments. In particular,
the results are aimed to be used with the adjacency matrix of a graph. The chapter ends

with a result on polynomials which will be utilised in the following chapter.

The second chapter introduces the ideas of main eigenvectors, main eigenvalues, main
polynomials, and main eigenspaces. The number of walks Nj of length k is expressed
solely in terms of the main angles and main eigenvalues of a graph. Generating functions
for Ny are derived, and the main polynomial mg(z) is shown to have integer coefficients.

These concepts are then applied to obtain results on walk matrices.

In the third chapter, canonical double covers are introduced and some standard facts
are proven about them. Some original results are presented in this chapter, in particular

the proofs of theorem 4.4 and the hierarchical results of section 4.3.

Finally in the appendix, a list of all pairs of non-isomorphic graphs on n < 8 vertices

having the same canonical double cover is presented.

10



CHAPTER 2

Preliminary Matrix Theory

“We think basis-free, we write basis-free, but

when the chips are down, we close the office

door and compute with matrices like fury.”
IRVING KAPLANSKY

In this chapter, we provide proofs of some fairly common algebraic results which concern

symmetric (0, 1)-matrices.

2.1 Permutation Matrices

First we go to the notion of a permutation matrix. These are matrices whose columns are

simply permutations of the columns of the identity matrix. We define them as follows.

Definition 2.1 (Permutation Matrix). A square matrix P = (p;;) is said to be a per-
mutation matriz if each row and column contains precisely one 1, and the remaining

entries are zero.

More precisely, for each fixed i, there is precisely one j = j’ such that p;;; = 1, and
pij = 0 otherwise. Similarly, for each fixed j, there is precisely one i = i’ such that

pirj = 1, and p;; = 0 otherwise.

Using a pigeonhole argument, one can easily see that permutation matrices correspond to
permutations of the columns of the identity. Indeed, there is a natural correspondence:
any permutation m: [n] — [n] of the numbers 1,...,n corresponds to the permutation
matrix Pr = (p;;), where p;; = 1 if w(i) = j, and p;; = 0 otherwise. Consequently, the

number of n X n permutation matrices is n!.

A basic fact about permutation matrix is that they are orthogonal:

11
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Proposition 2.2. Let P be a permutation matriz. Then PPT =1.

Proof. If P = (pij)nxn, then

. u 1 ifi=j
[PP")i; =Y priprj = .
1 0 otherwise,

as required. O

Moreover, permutation matrices are the only orthogonal matrices having non-negative

entries:

Proposition 2.3. Let P = (p;;) be an n x n matriz with p;; > 0 for all i,j € [n] and

PP" = 1. Then P is a permutation matriz.

Proof. Each row and column of P must contain at least one non-zero entry, otherwise

PPT # I since the product will have a row/column of zeros.

Now suppose two entries of P in the ith row are non-zero, say p;; and p;;» where j # j'.
But then the entry in the jj’th position in PPT will not be zero, a contradiction. A

similar argument yields the corresponding fact for columns.

Finally, suppose one of the non-zero entries of P is not equal to 1, say in the ¢jth position.

Then the entry in the jjth position of PP is ) p%j = pgj # 1, a contradiction. [

Remark 2.4 (Birkhoff-von Neumann). A famous result about permutation matrices is

the so-called Birkhoff-von Neumann theorem.

A matrix A = (a;;) is said to be doubly stochastic if the sum of each row and column is
1, ie., if for all ¢ and for all j, we have >, ajx = > ;_; ar; = 1. Such matrices are of

interest in probability theory, particularly when representing Markov chains.

Clearly all permutations are doubly stochastic. Moreover, according to the theorem:
every n X n doubly stochastic matrix may be written as a convex combination of the
n! different n x n permutation matrices Py,...,P,. In other words, if A is doubly
stochastic, then there exist ai,...,q, € R with a1 4+ -+ 4+ a,,) = 1 so that we may
decompose A as

A=oPi+ 4+ a,Pu.

12
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Even though there are potentially n! terms in such a decomposition, it has been shown
that there are never more than (n — 1)2 + 1 terms necessary, although determining the

minimal expansion is NP-hard.['?]

We only mention this theorem here, but do not provide a proof, as we will not be making

use of it in later chapters.

Now we go to perhaps the most important use of permutation matrices as far as we
are concerned—they provide us with an equivalent formulation of the notion of graph

isomorphism.

Proposition 2.5. Let G and H be two graphs having adjacency matrices Ag = (gi;) and
Ay = (hi;) respectively. Then G ~ H if and only if there exists a permutation matriz P
such that PTAGP = Ay.

Proof. Suppose G and H are isomorphic, i.e., there is a bijection 7: V(G) — V(H) such
that {u,v} € E(G) if and only if {m(u), 7(v)} € E(H). Define the n x n matrix P = (p;;)
by

1 ifn(i)=j

bij =

0 otherwise,
i.e., there is a 1 in row ¢ and column j if vertex ¢ in G is relabelled to j in H, and
a 0 otherwise. Since 7 is a bijection, fixing ¢, one has that p;; can only be 1 for a
single value of j and 0 otherwise; similarly if j is fixed, there is only one value of ¢ such
that p;; = 1. Thus each row and column of P contains precisely one 1, making it a

permutation matrix.
Now by matrix multiplication, the ijth entry of PTAGP is
n n
Z Zpkigképﬁj = PuiGuvPuj,
k=1 £=1

since by definition of p;; and g;;, the terms in this double sum can only be non-zero if
there are u,v € V(G) such that w(u) = i, {u,v} € E(G), and 7(v) = j; which is true if
and only if {m(u),m(v)} = {i,7} € E(H). In other words,

1 if {i,j} € E(H)

n n
Z Zpkigkepzj = = hjj,

el f—1 0 otherwise
and so PTAGP = (h;;) = An.

13



MAT3999 §2.1. Permutation Matrices

Conversely, suppose P = (p;;) is a permutation matrix such that PTAgP = Ay, and
define

m={i—j:pyj=1}

Clearly 7 is a bijection from V(G) to V(H), since for each i there is a j such that p;; = 1,

and vice-versa. Moreover,

{u,v} € E(G) <= gupy =1

PuiGuvPvj = 1 (Where 7T(2> =u, 7T(j) = 1))

11

PuiGuvPvj + 0=1

n n

DuiGuvPvj + E E Drigrepe; = 1
k=1 /=1
k#u £v

n n
Z Zpkigkzpzj =1

k=1 ¢=1
hij =1 < {i,j} = {r(u),n(v)} € E(H),

!

!

!

i.e., G~ H, as required. U

An immediate consequence of this result is the following.

Corollary 2.6. Let G and H be isomorphic graphs. Then G and H have the same:

(i) rank, (iv) trace,
(ii) characteristic polynomial, (v) eigenvalues and multiplicities,
(1ii) determinant, (vi) minimum polynomial.

Proof. Since G ~ H, then there is a permutation matrix P such that PTAGP = Ap.
Moreover, since P is a permutation matrix, then by proposition 2.2 PT = P~ so in fact
P~ 'AGP = Ay. Hence the adjacency matrices are similar, and thus properties (i)—(vi)

follow immediately by usual linear algebra theory on similar matrices. O

Therefore, since isomorphic graphs have many properties in common, we will not give
importance to the labelling of the vertices, and omit vertex numbering in future figures

and examples (unless it makes a difference to our considerations).

14



MAT3999 §2.2. Spectral Results

2.2 Spectral Results

Some important facts about eigenvalues and eigenvectors are more fruitful when we

restrict our considerations to adjacency matrices of graphs.

Suppose V = V(C) is a complex vector space of finite dimension with basis {b1,...,b,}.
Then (-, -): V x V — R defined by (x,y) = x'y, where the bar denotes complex

conjugation, defines an inner product on V; that is, the following properties hold:

(x+y,z)=(x,2z) + (y,z), and

(i) (LINEARITY IN THE FIRST COORDINATE)
Az, y) = Az, y),
(i) (x,y) = (y, x), (CONJUGATE SYMMETRY)
(iii) (z,x) >0, and (z,x) =0 < = =0. (POSITIVITY)

An operator A: V — V' is Hermitian if for all x,y € V, (Ax,y) = (x, Ay).

Proposition 2.7. Let A: V — V be an operator. Then A is Hermitian if and only if
A=AT

Proof. Suppose A Hermitian. Then
aij = (Ab;, bj) = (bj, Abj) = (Abj, b;) = aj;,
so A = AT. Conversely, suppose AT = A. Thus for any &,y € V,
(Az,y) = AzTy = 2'ATy = ' Ay = (z, Ay),
thus A is Hermitian, as required. O

Since the adjacency matrix of a graph is real and symmetric, it follows that it is a

Hermitian operator.

2.2.1 Orthogonal Projections

Now we take a look at orthogonal projections, which help us obtain the spectral decom-

position of an operator.

Definition 2.8 (Orthogonal Projection). The orthogonal projection of v onto u, where

15
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FIGURE 2.1: Tllustration of definition 2.8 in R2.

u,v € R", u # 0, denoted P, (v), is the vector given by

More generally, the orthogonal projection of v onto a subspace U < V, denoted Py (v),

is the vector

PU(U) = Z Pui (v)v
=1

where {u1,ug,...,u,} is an orthonormal basis for U.

Even though we define the orthogonal projection Py: V' — U in terms of some or-
thonormal basis of U, it is in fact independent of which orthonormal basis is chosen.

This follows from the following fact.

Proposition 2.9. Let U <V be a subspace, and let v € V.. Then Py (v) is the unique
u € U such that (v—u,x) =0 forall x € U.

Proof. Fix an orthonormal basis {u1,...,u,} for U. Clearly for any u;,

(o= Py (o)) = (v - Z“"‘”uu>

2 2

= (o) — S

2= a2
<v,u->
it ~

=0,

16
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and hence for any vector Y ;_; oju; in U, we have

<v — Py (v), ;au> = ga,@ —Py(v),u) = 0.

Now to show that there is only one vector with this property, suppose there are two

vectors u, u' such that for any © € U, (v —u,x) = (v—u/,x) = 0. Then for any € U,

v—u,z)— (v—u,x)=0
(

(
(

= (v—u)—(v—u),z) =0

= (u—u,z) =

= (u—v,u—u)=0 sinceu—u €U

= u=u O

Since the projection of v onto U is the unique vector satisfying the property of proposi-

tion 2.9, then the orthonormal basis chosen does not make a difference.
A nice property about projections is their idempotency.

Proposition 2.10. Let U <V be a subspace. Then Py? = Py.

Proof. Let v € V. By proposition 2.9, the projection u = Py (v) is the unique uw € U
such that (v —u,z) = 0 for all € U. Similarly, v’ = Py(u) = Py?(v) is the unique
u' € U such that (u —vu/,z) =0. But (u —u/,z) =0 = (u,z) = (u/,x) for all z. It
follows that u = w/, i.e., that Py (v) = Py?(v). O

Another useful property of projections is the following.

Proposition 2.11. Let Py: V. — U be a projection, and let By = {bi,...,b,} be an
orthonormal basis for V', a subset By of which forms a basis for U. With respect to this

basis, Py has matrix representation

€1 0 0

0 €9 0
Py =

0 O en

where e; = 1 if b; € By, and e; = 0 otherwise.

17
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Proof. Let v =a1b; + -+ ayb, € V. Then

Py(v) = Z Hb||2 ZZ%SZ ) b; —Zalez i

beBy i=1j=1 =0 unless
b; =b;
€1 0 0 (651
0 €9 0 a9
- b
0 O en o,
as required. O

As a consequence of this matrix representation, we have the following easy corollaries.

Corollary 2.12. Suppose V. = @;_, U;. Then

zs: Py =L
=1

Proof. B =|J;_, By, is an orthonormal basis for V, where By, is an orthonormal basis
for each U;. The matrix representation of each Py, is as in proposition 2.11. Any overlap
of diagonal entries amongst the Py,’s contradicts that the sum is direct, whereas any

diagonal entry left out contradicts that B spans V. ]
Corollary 2.13. Let Py : V — U be an orthogonal projection. Then

PP, =Py =1]|U.

2.2.2 The Spectral Theorem

Now we go to the spectral theorem, an important result which illustrates a lot of the
nice properties of Hermitian operators. In particular, it allows us to decompose them as

a sum of projections onto their eigenspaces.

Theorem 2.14 (Spectral Theorem). Let A:V — V be a Hermitian operator with

distinct eigenvalues p1,--- , pus. Then:

(i) Each eigenvalue p of A is real,

18
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(i) There is an orthonormal basis for V consisting solely of eigenvectors of A. Con-
sequently V = @%_, Ea (),

(ii) A may be written as
A=mPr+-+ pPs

where P;: V. — Ea(u;) is the orthogonal projection onto the eigenspace corre-
sponding to ;.
Proof. For (i), if v # 0 and Av = pv, then

ullo]l” = (v, v) = (Av,v) = (v, Av) = (v, ) = (v, o) = fillv]]%.

SO [ = [i, i.e., p is real.

For (ii), we proceed by induction on dim V. If V' is of dimension zero, then the empty

set is a basis for V and V' = {0} is the result of an empty direct sum.

Suppose dim V' > 1. By the fundamental theorem of algebra, the characteristic polyno-
mial of A has a root p and a corresponding unit eigenvector v. Moreover by (i) above,

1 is real.

Now consider the space U = {v}*, and note that for all u € U,
(Au,v) = (u, Av) = (u, pv) = i(u,v) =0,

so Au € U, ie., U is A-invariant. Since V. = U @ U' and dimU~+ = 1, it follows
that dimV = dimU + 1 > dim U, so we may apply the inductive hypothesis to get an
orthonormal basis B for U in terms of eigenvectors of A [ U. BU{wv} gives the required

basis.

Since each eigenvector of A in BU{wv} is in its eigenspace, and by proposition 2.17 below,

eigenvectors from different eigenspaces are independent and orthogonal, it follows that
V = @i Ealpi)-

Finally for (iii), we know that the matrix representation of A in terms of a basis of
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eigenvectors is diagonal. By (ii) above, A has such a basis, so we can write

H1

0)

Hs

where p1,...pus are the distinct eigenvalues of A, each appearing m(u;) times, where

m(u;) is the multiplicity of y; in the characteristic polynomial ¢ . Hence

1
o o 0 o)
A= +oe K
=mPy+-- 4+ psPs

by proposition 2.11. O

Ezample 2.15. Suppose

Then ¢a(A) = A2 — 36, so the eigenvalues of A are 0 and +6. Moreover, the corre-

sponding orthonormal eigenvectors of A are the columns of the transition matrix

1 1 _ 1

V2 V3 V6

P I N

V2 V3 V6

0 12

V3 V6

With respect to this basis, A may be written as

0 0 O 1 00 0 0 0 0 00
A=10 6 =0|0 0 O|+6]J0 1 0] +-6]0 0 O
0 0 —6 0 0O 0 00 0 01
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or, with respect to the standard basis,

11 111 101 1

2 2 3 3 3 6 6 3

_ol 11 11 1)y gl 1 1
A=0 220+6333+6 6 6 3
1 1 1 1 1 2

0 0 0 3 3 3 -3 —3 3

As a consequence, we immediately get the following.
Corollary 2.16. Let G be a graph with |V(G)| = n. Then R™ has a basis in terms of

the eigenvectors of G.

Proof. The adjacency matrix of a graph is a linear operator A: R" — R™. Moreover,
the adjacency matrix of a graph is symmetric, so by the spectral theorem the result
follows. o
We will also find the following fact useful.

Proposition 2.17. If A:V — V is Hermitian, then any eigenvectors belonging to
distinct eigenvalues are linearly independent and orthogonal.

Proof. Suppose Ax = Ax and Ay = py where A\ # p and « # 0 # y.

We do not need the Hermitian property for independence, indeed, suppose ax + by = 0.
Then

0=A0=A(azx + by) = adx + buy (2.1)

Moreover, ax + by = 0 = alx + bAy = 0. Subtracting this from (2.1), we get
(A — p)ax = 0. Since A and p are different and « # 0, we must have that a = 0.
Multiplying ax + by = 0 by p instead similarly yields that b = 0, as required.

Now for orthogonality, observe that

(A =)z, y) = Az, y) — (z, 1Y) = (Az,y) — (z, Ay)

and since A # u = i (eigenvalues are real by the spectral theorem), then it follows that
(x,y) =0. O
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2.3 Number of Walks

In this section, we make an important observation about entries of powers of the adja-

cency matrix of a graph; namely, that they encode the number of walks in the graph.
Theorem 2.18. Let G be a graph with adjacency matric A. The number of walks of
length k from vertex i to vertex j is the ijth entry of AF.

Proof. By induction on k. Let W;;(k) denote the set of walks of length k from 7 to j.
For the base case,
Wij(1) = {(vo,v1) : {vo, v1} € E, vo = i and vy = j}
{G, 7)) it{ij} ek
0 otherwise,
S0 |Wz](1)| =1if {Z,j} € E and 0 otherwise, i.e., ‘le(l)‘ = Q;j = [Al]m

Now let £ > 1. Then

Wij(k) = {(vo,...,v) : {vi—1,v;} € Efor 1 <i<k,vg=1and v, =j}
={(vo,...,4,7): (vo, oo 0) € Wiy(k—1)and £ € N(j)}
U {’Uo,.. (UO;" , ) ( )}
LeN(35)

and consequently,

Wi (W) = > H(vo,... . £,5) : (vo, -+ ,£) € Wig(k — 1)}

ZEN(g

_Zag]‘{ Voy ey by J) (v, ) € Wig(k — 1)}

= Z% [Wig(k —1)| = Z[Ak*lhé agj = [A"],

/=1

by the induction hypothesis. O

Corollary 2.19. The number of walks of length k starting from vertex ¢ is the ith entry
of A¥j.

Proof. Let W;j(k) be as in the proof of theorem 2.18. The number of walks of length k
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from vertex 7 is then

U Wij(’“)’ = Wik = D (AR = D T[AR); 1 = [AFS);,

jev jev JEV j=1

as required. ]

Corollary 2.20. Let G be a graph with adjacency matriz A, having e edges and t

triangles. Then
(i) tr A =0,
(ii) tr A? = 2e,

(iii) tr A3 = 6t.

Proof. (i) follows by definition of A. For (ii), observe that the entries on the diagonal
of A? are those walks of length 2 from a vertex to itself. At each vertex v, there are
degv such walks, namely (v,n,v) for n € N(v). Thus tr A? =" _, degv = 2e by the

handshaking lemma.

Finally for (iii), observe that each walk of length 3 from a vertex w to itself, (u,v,w,u),
corresponds to a triangle. However each triangle is counted six times: indeed, (u, v, w,u),
(u, w,v,u), (v,u,w,v), (v,w,u,v), (w,u,v,w) and (w, v, u, w) all correspond to the same
triangle {u,v,w}. Thus tr A® =3 | [A®%];; = 6t. O

Since the trace of a matrix is the sum of eigenvalues, then the spectrum of a graph
determines the number of vertices, edges and triangles. It is difficult to generalise corol-
lary 2.20, as K 4 and K 4 Cy are cospectral yet they do not have the same number of
4-cycles.

2.4 Gauss' Lemma

We conclude this chapter with a useful result on polynomials. Z[z] and Q[z] denote
the rings of polynomials over the integers and the rationals respectively. Reference was

made to [9] for the results in this section.

Definitions 2.21 (Polynomial Terminology). The content of a polynomial p = ag +

a1z + - -+ + apz™ € Z[x] is the greatest common divisor of its coefficients a;.

A polynomial is said to be primitive if its content is 1.
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Clearly any polynomial p € Z[z] with content ¢ can be written as cq(z) where ¢ is
primitive.
Lemma 2.22. Let p,q € Z[zx] be primitive polynomials. Then the product pq is primi-

tive.

Proof. Let p=ag+ -+ + apz™ and ¢ = by + - - - by, z™, and for contradiction, suppose
that pg has content ¢ # 1. In particular, ¢ has some prime factor d. Since p and ¢ are
primitive, then d does not divide at least one coefficient of p and of q. Let i and j be

the smallest subscripts for which d does not divide a; and does not divide b;.

In pq, the coefficient of 2't7 is

Citj = aibj + (@ir1bj—1 + - + aivjbo) + (ai—1bj+1 + - -+ + agbiyy) -
:;A :ZB

By the minimality of ¢ and j, d divides both A and B. Since d is the content of pq, d
also divides c¢;y;. But the above implies that d divides a;b;, which is a contradiction,

since d is prime and does not divide a; nor b;. O

Theorem 2.23 (Gauss’ Lemma). If a primitive polynomial p € Z[zx] can be factorised

as u(z)v(z) where u,v € Q[z], then it can be factorised as s(x)t(x) where s,t € Zx].

Proof. If p(x) = u(z)v(x), then by taking out common factors and finding the lowest
common denominator, we can write p = ¢ s(x)t(z) where a and b are integers and s,t
are both primitive. Thus bp(x) = a s(x)t(z). Since p is primitive, the content of bp is
b, and similarly the product st is primitive by lemma 2.22, so the content of ast is a.

Therefore a = b, and p(z) = s(z)t(z), as required. O
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CHAPTER 3

Main Eigenvalues

“All truly great ideas are conceived whilst
walking.”
FRIEDRICH NIETZSCHE

The all-ones vector 7 = (1,...,1) plays an important role when determining the number
of walks of fixed length from a chosen starting vertex, as we have seen in corollary 2.19.
In this chapter, the vector 7 and its relationship with the eigenspaces of a graph are

examined. Many of the ideas presented here are from [16], [6] and [14].

Definitions 3.1 (Main Eigenvalue). Let G be a graph. An eigenvalue p of G is said to
be main if the corresponding eigenspace E(u) is not orthogonal to j, i.e., there exists
x € E(p) such that (z, ) # 0.

Two graphs having the same main eigenvalues are said to be comain.

3.1 Main Angles

Suppose that A(G) has spectral decomposition

A =Py + Py + -+ psPy

where the first p eigenvalues p1,p2, -+, ¢, are main, and the remaining eigenvalues
Hp41,- - 5 Mbs are non-main. Then main angles ¥1,...,7s of G are the numbers
1 .
Ui = % 1P 3]
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i.e., the cosines of the angles between j and the eigenspaces E(u;). Evidently, p; is main

if and only if 9¥; # 0. Moreover, since

512 =373 = 3"(P1"Py + -+ + PyPy)j = (P13) (P1g) + - + (Pug) (Pug)
=1 = [Pujl* + -+ + [P,

we have that 93 +--- + 92 = 1.

It is also worth noting that by the Perron—Frobenius theorem, every graph G has a unique
largest eigenvalue having a corresponding eigenvector with strictly positive components.
In particular, this eigenvector cannot be orthogonal to j; so the largest eigenvalue of a

graph G is always main.
The main angles of a graph give us a nice formula for the number of walks.

Proposition 3.2. Let G be a graph on n vertices, let 1, ..., 1y be its main eigenvalues,
and let Ny be the number of walks of length k in G. Then

Ny =n(0 "+ + ﬂpzﬂpk)-
Proof. Suppose A has spectral decomposition 1Py + -+ + usPs. Then

Aj = mPij+ - 4 mpPpi + ppiaPprij + -+ usPyj

= Mlplj + .+ Mpij non-main
= AYj = "Pij+ -+ 1Py
Then by corollary 2.19,
n p p
Np = [A%li = TA%N =D kP = pif|Pij|?,
i=1 i=1 i=1

and since 9;>n = ||P;j||?, the result follows. O

3.2 The Main Polynomial

Recall that the characteristic polynomial ¢g(x) of a graph is given by

s

do(x) = det(al — A) = [ (& — )™,
=1
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where p1, ..., pus are the distinct eigenvalues of G having multiplicity m(u;) for 1 <7 < s.

We introduce an analogous function which treats solely main eigenvalues.

Lemma 3.3. Let G be a graph. Then ¢g has integer coefficients.

Proof. Clearly each entry of xI— A is a polynomial with integral coeflicients, being either
integers or terms of the form x — a;;. Since det(zI — A) is simply a sum of products of
entries (by the Leibniz formula for determinant), it follows that det(zI— A) € Z[z]. O

Definition 3.4. Let G be a graph. The main polynomial of G, denoted mg(z), is the

polynomial
S
me(w) = [[(@ - ).
i=1
where pq, ..., s are the distinct main eigenvalues of G.

Note that each main eigenvalue p; has multiplicity 1 in mg, regardless of its multiplicity
in ¢g.

A nice fact about mg is that its coefficients are always integers. Before we give a proof
of this fact, we will need the following theorem due to Cvetkovié¢, which provides us with

a generating function for the number of walks of length k in a graph G.[%

Theorem 3.5 (Cvetkovi¢). Let G be a graph on n wvertices with main eigenvalues

M1y -y Pp, let Ny be the number of walks of length k in G.

Then we have the following generating function for Ny:

. k_} _ ngbé(_%)_
kZOth =< (( 1) oo 1>.

Proof. If M is a non-singular n x n matrix, and J is an n X n matrix consisting entirely

of ones, it is straightforward to check that for any =z,

det(M + 2J) = det(M) [ 1 +xzn:zn:[1vr1]ij : (3.1)
i=1 j=1

In particular, we have that N = > " | Z?ZI[A’“]Z-]- by theorem 2.18; and since for ¢
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within a suitable convergence radius,
o)
Y AR = (T-tA)
k=0

we get
n n

> > 1 /det(I —tA +tJ)
k_ k) ogk 2 _
Dot =33 St = (M)

=1 j=1

by (3.1) with M = I—tA and x = . But since the adjacency matrix A of Gis J —I1— A

(proposition 1.4), this becomes

> 1 (det((t+ 1)L+ tA)
E%Nuk_t< —1)

det(I — tA)
1 det(—1 - A
- (71)71 € ( lt ) -1 ’
as required. O

Now we prove that the main polynomial has integer coefficients. This result is also due

to Cvetokovié.

Proposition 3.6 (Cvetkovi¢!® °). Let G be a graph. Then mg € Z[z].

Proof. Consider the function

By theorem 3.5 and proposition 3.2,

R I TCE R z(z o)

n
=1+u;19 Z%

n P 2
:”azﬁu
—1+ni 0;* = p(u)

llu_ﬂz me(u)’

(for |1] < R)
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where p(u) is the polynomial obtained by gathering terms on the lowest common de-
nominator mg(u). Thus ¥ (u) has simple poles only at the main eigenvalues of G, so
¢e(—u — 1) and ¢g(u) have common factors which cancel. But these common factors
must have rational coefficients (by the Euclidean division algorithm), and so must mg(u).

Moreover by theorem 2.23, mg(u) has integer coefficients. O

Corollary 3.7. Let G be a graph. A generating function for the number of walks Ny in

G is
> k P n'l92‘2
H¢(t) = Npt® =
o) = >Nk = 3

=1

Proof. In the proof of proposition 3.6, simplification of ¥ (u) yielded

FEDILTERRD Py
k=0 i=1 Hi

Put t = % and the result follows. O

3.3 The Main Eigenspace

Let {by,...,b,,} be a basis for the m-dimensional eigenspace E(j) of some main eigen-
value p having multiplicity m in ¢g, such that the first one by is not orthogonal to j.
Now for 2 < i < m, define

n n

w; = 1-

It is easy to check that (w;,j) = 0 for i > 2, and that B = {wa,...,wn,b1} is
still a basis for E(u). Moreover, Gram—Schmidt orthogonalisation on B;’L produces an
orthonormal basis B, = {x2,...,xm,x1} for E(u), still having only one vector &1 not

orthogonal to j. Denote this vector by x,,.

Definition 3.8 (Main Eigenspace). Let G have main eigenvalues pq,...,u, and let
mv(G) = {x,,,...,x,,} denote the uniquely determined set of eigenvectors obtained by

the process described above, where each x,, € E(y;) is not orthogonal to j.

Then the main eigenspace of G, denoted by Main(G), is the linear subspace span(mv(G))
of R™.

The eigenvectors in mv(G) are orthogonal and linearly independent, as they belong to
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distinct eigenvalues (proposition 2.17). Hence dim(Main(G)) = p. It follows also that

mv(G) can be extended to a basis for R™.

Proposition 3.9 (Main Polynomial). Let G be a graph with adjacency matriz A. Then

MA(T) = A Main(G)(T)-

Proof. Suppose (A | Main(G))x = pux. Then Ax = pux, and € Main(G), i.e., there
are «; such that

T =01y + 0+ Ty,

But x,, are all eigenvectors corresponding to distinct eigenvalues (namely p;), so their
sum cannot be an eigenvector. In other words, all but one of the «;’s are zero. So x

must be a scalar multiple of one of the x,,’s. O

This result immediately gives an analogue to the Cayley-Hamilton theorem.
Corollary 3.10. Let G be a graph. Then mg(A) | Main(G) = O.

Proposition 3.11. Let G be a graph, and let mv(G) = {x1,...,z,}. Then
P
J=vn)_ i,
i=1

where |v;| = 94, i.e., the main angles of G.

Proof. Recall, by the process of obtaining mv(G), that the orthonormal basis B, for
E(u;) contains only one vector @; with non-zero component along j, i.e., (§,b) = 0 for
all ; # b € By,. Thus, since R" = @;_; E(),

i= > <j,b>b=§<j,wi>wi- (3.2)

belUi_; By,

Moreover, if we project j onto E(u;) for some p;, the resulting projected vector P; j =
ZbeBM.<j7b>b = (j,x;)x;, and since x; is unit, ||P;j|| = |(j,2;)|. Thus by (3.2), the

result follows. O

Together with corollary 3.10, this result gives us that mg(A)j = 0.
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3.4 The Walk Matrix

In corollary 2.19, the number of walks of length k from vertex ¢ is show to be the ith

entry of the vector A¥j. This motivates the following definition.

Definition 3.12. Let G be a graph with main eigenvalues y1, ..., i,. The k-walk matriz

is the n x k£ matrix

. |
Wek)=|j Aj --- AMYj

In particular, the walk matrix W¢ of G is the p-walk matrix, i.e., Wg = Wg(p), where

p is the number of main eigenvalues of G.

Theorem 3.13. The columns {j, Aj,..., AP~ 5} of Wg are a basis for Main(G).

Proof. Let mv(G) = {@x1,...,2x,}. Since j = E?Zl Bjx; by proposition 3.11 (where §; =
+/nd;), we can write A'j = 25:1 BiAlx; = Z];:l Bipi'xj, sospan{j, Aj,...,AP~15} C
Main(G).

Now we prove linear independence. Suppose there are a; such that
P

p—1 p—1 P p—1
Soni=o = Sa¥anim -0 = 5 (55 an)a -0
=0 =0 =1 =0

1

By the linear independence of mv(G), it follows that 3; Zf;& aipi* =0forall1 < j < p.

Now since |5;| = v/nd; # 0 (otherwise u; would not be main), we have the equations

1 ope po? o poP? aq
L . =0.
Lopp mp® o Pt Qp—1

The left hand-side is the well-known Vandermonde matrix, whose determinant is non-
zero for distinct p;. Thus the only solution to this system is ag = -+ = o1 = 0, as

required.

Thus {j,Aj,...,AP"15} is a set of p = dim(Main(G)) linearly independent vectors in
Main(G), so they form a basis. O

An immediate consequence is the following fact about walk matrices.
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Corollary 3.14. Let G be a graph, and let W¢(k) be its k-walk matriz. Then

rank(Wg(k)) = min{k, p}.

Moreover, if we have the walk matrix Wg of a graph G, we can obtain W¢(k) for k > p
using ma (G).

Proposition 3.15. Let G be a graph, and suppose its main polynomial is mg(x) =
aP — coxP™l — . — cp—2% — Ccp—1. Then

APj = coj+ c1Aj+ -+ cpo1 AP

Multiplying by AP for i > p, one obtains a recurrence relation for the ith column of

W (k) in terms of the previous p columns.

Proof. By the analogue of the Cayley-Hamilton theorem (corollary 3.10), we have mg(A)j =
0, which gives the result. O

Corollary 3.16. Any two comain graphs with the same walk matriz have the same

k-walk matriz for any k > p.

Proof. Any two comain graphs have the same main polynomial, so proposition 3.15 gives
the result. O

Counterexample 3.17. Unfortunately this is untrue for graphs which are not comain.
The two pairs (Gsg22, G12058) and (Gse26, Gi2093) are counterexamples obtained using
Mathematica. They are the only counterexamples on < 8 vertices having the same walk

matrix, but not the same k-walk matrix for k > p.

Refer to figure 3.1. The numbering of the graphs is in accordance with the list of non-

isomorphic graphs on 8 vertices on Brendan McKay’s graph data website.['”]
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Gs622 G12058
Main Eigenvalues: #, 1+;/ﬁ Main Eigenvalues: S_F, 3+;/§
Walk Matrix  3-walk Matrix Walk Matrix  3-walk Matrix
1 4 1 4 20 1 4 1 4 19
1 4 1 4 20 1 4 1 4 19
1 4 1 4 20 1 4 1 4 19
1 4 1 4 20 1 4 1 4 19
1 5 1 5 21 1 5 1 5 22
1 5 1 5 21 1 5 1 5 22
1 5 1 5 21 1 5 1 5 22
1 5 1 5 21 1 5 1 5 22
G5626 G12003
Main Eigenvalues: 1+ /17,1 — /17 Main Eigenvalues: 2 4+ /10,2 — /10
Walk Matrix  3-walk Matrix Walk Matrix  3-walk Matrix
1 4 1 4 24 1 4 1 4 22
1 4 1 4 24 1 4 1 4 22
1 4 1 4 24 1 4 1 4 22
1 4 1 4 24 1 4 1 4 22
1 6 1 6 28 1 6 1 6 30
1 6 1 6 28 1 6 1 6 30
1 6 1 6 28 1 6 1 6 30
1 6 1 6 28 1 6 1 6 30

FI1GURE 3.1: The only two counterexamples on < 8 vertices, as described in
counterexample 3.17.
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CHAPTER 4

Canonical Double Covers

“You keep using that word, I do not think it
means what you think it means.”

INIGO MONTOYA
(THE PRINCESS BRIDE)

Most of the results presented here, as well as their proofs, are from [4].

The canonical double covering (or bipartite cover) of a graph G = (V, E) of order n,
denoted by CDC(G), is a graph G' = (V’, E’) of order 2n where V' =V x {0,1}, and
E' = {{(u,0),(v,1)},{(u,1), (v,0)} : {u,v} € E}. In other words, CDC(G) is obtained
by producing two copies of the vertex set, and replacing edges {u,v} in the original
graph by edges from the first copy to the second copy, and vice-versa (see figure 4.1 for
examples). Clearly, CDC(G) is always bipartite, with partite sets V' x {0} and V' x {1}.

If the vertices in V' x {0} are given the first n labels, then it is not hard to see that the
adjacency matrix of CDC(G) is given by

A(CDC(G)):( 0 A )

AG | O

This is actually equivalent to the so-called direct product of G with Ky, i.e., CDC(G) =
G x Kiy. The direct product was introduced by Whitehead and Russell in Principia

Mathematica, as an operation on binary relations.['”]
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MAT3999 3. Canonical Double Covers

Cs

K2,3 CDC(KQ,P,) ~ 2K2)3

FIGURE 4.1: Canonical double coverings of C3 and K 3, where vertices (v, 0)
are represented by circle nodes, and vertices (v, 1) by square nodes.
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MAT3999 §4.1. Two Structural Results

4.1 Two Structural Results

The following first result utilises CDC’s to distinguish between bipartite and non-bipartite

connected graphs.

Proposition 4.1. Let G be a connected graph. Then G is bipartite if and only if CDC(G)
is disconnected. Moreover, if G is bipartite, then CDC(G) ~ 2G.

Proof. Let G be bipartite, and let U, Uy be the partite sets of G. Consider CDC(G),
and let V; = {(v,0) : v € U;} and V] = {(v, 1) : v € U;} for i = 1,2 be the corresponding
partite sets and their copies in CDC(G). Since edges in G are only from U; to Uy,
then edges in CDC(G) are only either from V; to Vj or V2 to V{. Therefore CDC(G)
is disconnected with components being precisely the induced subgraphs on V3 U VJ and
Vo U V{, both of which are isomorphic to G.

For the converse, suppose CDC(G) is connected. Identify v; = (v1,0) and v} = (v1,1) as
notations for the two copies in CDC(G) of a vertex vy in G. Since CDC(G) is connected,
there is a path (vi,vy,vs,..., v}, vk, v]) joining vy to v}, where the vertices alternate
from one copy of the vertex set to another. But this corresponds to the odd cycle
(v1,v2,v3, ...,V v1) in G. Hence by proposition 1.3, G is not bipartite. O

Next we prove that the CDC operation is additive.

Proposition 4.2. Let G and H be graphs. Then
CDC(G + H) ~ CDC(G) + CDC(H).

Proof. We have

A(G) (0]
A(G+H)= ,
O | A(H)
and so
o A(G) (0]
O |A(H)
A(CDC(G+H)) = : (4.1)
A(G) O o
O [AH)
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On the other hand,

O |A(G)
A(CDC(G)) = )
AG | O
and similarly for H, so that
O |AG) o
AG)| O
A(CDC(G) + CDC(H)) = . (4.2)
O | A(H)
0]
AH)| O

When considering equations (4.1) and (4.2), it is not hard to see that the permutation

matrix

I.|lo|lo]|o
olo|y| 0
olig|lo|o
olo|lo]1y

where Ig and Iy denotes the |V(G)| x |[V(G)| and |V(H)| x |V(H)| identity matrices

respectively, gives the required relabelling:

P"A(CDC(G + H))P = A(CDC(G) + CDC(H)),
so that CDC(G + H) ~ CDC(G) + CDC(H), as required. O
Using induction, proposition 4.2 gives us that more generally

CDC(G;y + - -+ Gg) ~ CDC(Gy) + - - - + CDC(Gg),

and in particular when the graphs are all isomorphic, that CDC(nG) ~ n CDC(G).

4.2 Graphs with the same CDC

If two graphs G, H have isomorphic canonical double coverings, that is, CDC(G) ~
CDC(H), this does not determine H. Moreover, it does not even determine connectivity,
i.e., if G is connected, we do not necessarily have that H is connected. Indeed, since Cg

is bipartite, we have CDC(Cg) ~ 2C¢ by proposition 4.1. But then by proposition 4.2
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MAT3999 §4.2. Graphs with the same CDC

and figure 4.1, we have CDC(2K3) ~ 2 CDC(K3) ~ 2Cq. Thus we have two graphs with

the same CDC, where one is connected, and the other is disconnected.
However, we do have the following.

Lemma 4.3. Let G and H be two graphs with CDC(G) ~ CDC(H). Then G has no

isolated vertices if and only if H has no isolated vertices.
Proof. Indeed, if G has an isolated vertex, then G ~ G’ + Ky, so
CDC(G) ~ CDC(G' + K1) ~ CDC(G') + CDC(K;) ~ CDC(G') + Ky

by proposition 4.2, and therefore CDC(H) ~ CDC(G’) + K. Thus the matrix

A(CDC(H))z( o A(H)>,

AH)| O

has two whole columns of zeros, corresponding to the isolated vertices which make up
Ks. But a column of zeros in the matrix above arises only when a whole column of zeros
is present in one of the non-zero blocks A (H), and since both non-zero blocks are equal,
then these two columns must be distributed equally among both A (H)’s (otherwise they
would be different). In other words, A(H) must have a column of zeros, and consequently
H has an isolated vertex. This argument is symmetric by interchanging G and H, so we

also have the converse. O

This proposition is the key which allows us to prove the following theorem, which is one

of the main results of this chapter.

Theorem 4.4. Suppose G and H are two graphs with adjacency matrices Ag and Ay.
Then CDC(G) ~ CDC(H) if and only if there exist two permutation matrices Q and R
such that

QAR =Ay.

Proof. Suppose, without loss of generality, that the graphs G and H have no isolated
vertices (if they do, then by lemma 4.3, we could simply pair them off until we are left
with two graphs having no isolated vertices). If CDC(G) ~ CDC(H), then there exists a

38



MAT3999 §4.2. Graphs with the same CDC

permutation matrix P such that

pr (O AG 0 AH
Ag
<P11TP21T>< AG><P P12>_<OAH>
— = .
P | Py Ag| O Py | Py Ap| O

Multiplying out and comparing entries, we get that

Py1"AGP12 + P1iTAGPy = Ay (4.3)
Py "AGP11 = P12 AGPy = O, (4.4)

where equation (4.4) follows since all matrices have non-negative entries.

Now observe that
(P11 + P21)"Ag(Pas + P1o) = Ay

by equations (4.3) and (4.4). We claim that Q := (P11 + P21)" and R := Pas + Py
are permutation matrices. Suppose not. Being the sum of two submatrices of P, this
can only happen if a row (and column) are zero. But then Ay will have a row of zeros,

corresponding to an isolated vertex in H, a contradiction.

Conversely, if QAgR = Ay, then clearly

ars
R"| O

defines a permutation matrix, and it is easy to verify that
O A O A
P’ S lp= )
Ag| O Ay | O
as required. O

This weakened notion of graph isomorphism, where QAR = Ay and the permutation
matrices Q and R are not necessarily inverses, was first studied by Lauri et al. in [11].

They give a different proof of theorem 4.4 which uses a combinatorial argument. Such

39
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graphs are said to be two-fold isomorphic or TF-isomorphic, and we write

TF

G~ H.

The pair of permutations (Q, R) is called the TF-isomorphism.

In [11], the authors discuss a pair of TF-isomorphic graphs on 7 vertices found by B.
Zelinka. In the appendix, we present an exhaustive list of 32 non-isomorphic graph pairs

which have the same CDC on up to 8 vertices. The Zelinka example corresponds to the

pair (G164, Hi032).

4.3 Establishing a Hierarchy

In this final section, we compare the strength of relationships and similarities between
graphs using the results of this chapter and the previous one to establish a hierarchy in
view of their main eigenvalues, main eigenspaces, main eigenvalues, walk matrices, and

CDCs.

That being TF-isomorphic and having isomorphic CDC’s are equivalent is established
by theorem 4.4. Next, we show that having isomorphic CDC’s implies having the same

k-walk matrix for any k, and in particular, the same walk matrix.

Theorem 4.5. Let G, H be two graphs with CDC(G) ~ CDC(H), and let k be a natural
number. Then

W (k) = Wh(k)

for appropriate labelling of the vertices.

Proof. For a graph ', let Ar = A(T') and Cr = A(CDC(IN)). Since CDC(G) ~ CDC(H),
we can relabel the vertices of the graph H to get H’, so that Cg = Cu,. Now for any
0 < ¢ < k, we have that

Ach AnY
Ag'j Anrj

but since Cg = Cp, it follows that AGEj = A.H/Ej for all 0 < ¢ < k, so the columns of
W (k) and Wy(k) are equal. O

Now we show that the converse is false.
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§4.3. Establishing a Hierarchy

Same Main
Eigenvectors

/M/ 4.8 & 4.10

Same Walk
Matrix

Same Main
FEigenvalues

4.5

T

Isomorphic
CDCs

4.4

Two-fold
isomorphic

Same Main
Eigenspace

4.9

4.13

Related Walk
Matrices

FIGURE 4.2: The hierarchy we present through our results. The arrow =
means “implies”, and # means ”"does not imply”. The combination < is
short for = and <, i.e., “implies and is implied by”, and similarly < is short
for = and <=, i.e., “does not imply and is not implied by”. The dashed lines
which merge at the A node denote the conjunction of those two results. The
dotted lines denote a conjecture.

41




MAT3999 §4.3. Establishing a Hierarchy

Graph G Graph H

F1GURE 4.3: Graphs G and H give a counterexample to the converse of
theorem 4.5, since they have the same walk matrix but different CDC’s.

Graph G Graph H

FIGURE 4.4: Graphs G and H have the same main eigenvalues, but have
different walk matrices.

Counterexample 4.6. A counterexample of the converse of theorem 4.5 is given in fig-

ure 4.3. Indeed, those graphs have

10
10
10 | = Wy,
10

)

Il
O S SO G TN
= W W W Ww w w

12

but CDC(G) % CDC(H).

Moreover, these two graphs have distinct main eigenvalues, which shows that same walk

matrix # same main eigenvalues.

Counterexample 4.7. The graphs G and H of figure 4.4 prove that the converse is also
false, i.e., that having the same main eigenvalues does not imply that the graphs have

the same walk matrix.
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Indeed, they both have main polynomial z(z3 — 222 — 42 + 7), but their walk matrices

are
126 12 12 6 12
12 4 10 13 7 19
12 4 10 12 6 14
We=|[126 12, Wy=]|13 7 19
1 4 8 24 12 6 12
12 6 14 135 15
12 6 14 1135

It is also easy to check that their CDC’s are not isomorphic.

Counterexample 4.8. Here we show that graphs having the same walk matrix do not
necessarily have the same main eigenvectors. Indeed, the two pairs of graphs in coun-

terexample 3.17 have the same walk matrix but different eigenvectors.

The span of their eigenvectors however, results in the same space.

In fact:

Proposition 4.9. Let G and H be two graphs with the same walk matriz. Then
Main(G) = Main(H).

Proof. This follows immediately by theorem 3.13. O

Thus the leap from eigenvectors to eigenspace makes a difference. In fact, it turns out
that if two graphs have the same main eigenvectors but different main eigenvalues, they

can never have the same walk matrix:

Proposition 4.10. Let G and H be two graphs with the same main eigenvectors but
different main eigenvalues. Then Wg(k) # Wy(k) for all k > 2.

Proof. Let G and H both have the same main eigenvectors mv(G) = mv(H) = {z1,...,x,},
but different eigenvalues, u?, . ,ug, phto ,,upH. By proposition 3.11, the first non-j
column of Wg(k) is

p p p
Aci =vVnY vilemi =vn Y viplmi £y vl = Aug,
i=1 i=1 i=1

since the x; are linearly independent, as required. O

Ezample 4.11. Proposition 4.10 establishes a non-implication. However, even though it

is proven in general, we must ensure that it is not vacuously true.
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Graph G Graph H

FIGURE 4.5: Graphs G and H have the same main eigenvectors, but have
different walk matrices.

The graphs G and H in figure 4.5 both have main eigenvectors
(%(_1 + \/5)7 %(_1 + \/5)7 %(_1 + \/5)7 %(_1 + \/5)7 17 1) 17 1)7

but their walk matrices are

Wg

and WH =

e o T S Sy SaryEn
DI W W WW

S ) N g Srg
R R RN DD NN

Indeed, their main eigenvalues are different. G has main eigenvalues 1 & /5, whereas H

has main eigenvalues %(1 +/5).

On the other hand, the same main eigenvalues and eigenvectors yield a unique k-walk

matrix for any k:

Theorem 4.12. Let k € N, and suppose G and H are two comain graphs with the same
main eigenvectors. Then

We(k) = Wh(k).

Proof. Suppose G and H have main eigenvalues ji1, .. ., tip, and corresponding main eigen-

vectors @i ...,x,. By proposition 3.11 we may express j as j = » +_, Biz;. Now the
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¢th column of W¢(k) is the vector Aéflj, S0

P P
AC'j = Ag! Z Bix; = Z BiAC i
i=1 i=1

p p
-1 -1
= E Bik; T = § BiAy T
=1 =1

p
= Ay Z Bixi = Al '3,
i=1

i.e., the ¢th column of Wy(k). O

Finally we elaborate on what is meant by “related walk matrices” in figure 4.2.

Proposition 4.13. Let G and H be two graphs. Then Main(G) = Main(H) if and only
if there is an invertible matriz Q such that WgQ = Wy.

Proof. If Main(G) = Main(H), then the columns of W¢ and Wy are both bases for the
same space by theorem 3.13. In particular, the columns of Wy can be expressed as a
linear combination of those of Wg. Indeed, if the ith column ¢; is a;15 + aeAgy +- -+
aipAprlj, then

. | . | ai o Qup
WH = cL Cc gy = j AGj c. A—Gp_lj

] | | | e

Q must be invertible, since otherwise rank(Wy) # p.

Now for the converse, in Wy = WgQ the columns of W¢ are combined linearly by
Q so they are still members of Main(G). Since Q is invertible, none of the columns
of W become linearly dependent, so they still span all of Main(G). Thus Main(H) =
Main(G). O

Ezxample 4.14. An example of graphs having related walk matrices is given in figure 4.6.

These correspond to graphs 31 and 37 from [5], and were pointed out by Jeremy Curmi.
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Graph G Graph H

FIGURE 4.6: Graphs G and H have related walk matrices.

Indeed, we have

Wg

Il
e el
LU N DN N
|
e el
= 0 W W W

This same pair of graphs also serves as a counterexample to the following: having the
same main eigenspace does not necessarily mean they have the same main eigenvectors.
Indeed, the linearly independent main eigenvectors of G are (1,1,1,1, %(1 +/33), i(l +
V/33)), whereas those of H are (1,1,1,1, (-1 £+/33), 1(—1 £ v/33)).

We end with a conjecture which if true, would link CDC’s more intimately to their main

eigenvalues.

Conjecture 4.15. Let G and H be two graphs with CDC(G) ~ CDC(H). Then G and

H have the same main eigenvalues.

Remark 4.16. Even though in the appendix we narrow the search space to consider only
graphs which are comain, the list is still exhaustive, because it was determined by an

algorithm that there are no counterexamples to conjecture 4.15 on < 8 vertices.
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APPENDIX

All Pairs of TF-Isomorphic Graphs

on 8 Vertices

“What’s the use of a book without pictures?”

LEwis CARROLL
(Alice in Wonderland)

In this appendix, we give a complete list of all the TF-isomorphic graphs on 8 vertices,
that is, all pairs of graphs G, H with CDC(G) ~ CDC(H) and G # H.

Since for any pair of TF-isomorphic graphs, we have

by lemma 4.3, it is clear that this list contains all possible TF-isomorphic graphs on
n < 8 vertices (those pairs with n < 8 will correspond to graphs with isolated vertices
added to both, such as the first pair in the table).

This list was constructed by running a simple C program which made use of the list of
non-isomorphic graphs on 8 vertices available on Brendan McKay’s website.['?] First, the
large search space of (122346) = 76 205 685 pairs of non-isomorphic graphs was significantly
reduced to 1595 pairs of graphs which are comain using the QR algorithm (this step is
justified by remark 4.16). This was the most intensive step computationally—it took an

ordinary Linux home desktop around 25 minutes.

Then another program simply found the CDC’s of each of the graphs which remained,

and these were compared pairwise to check for isomorphism. This took around 5 seconds.

The images of the graphs were generated by importing the output of the C program into

Mathematica. The vertices are coloured so that vertices which receive the same colour
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have the same number of k-walks for any k. The graph numbers below correspond to the numbering given in McKay’s list

for non-isomorphic graphs on 8 vertices.

Graph Eigenvalues Walk Matrix CDC(G) ~ CDC(H)
(main eigenvalues denoted in bold)
1 2
447 1,-1,1,1,-2,0,0, 2 1 3 °
1 2
¢’ o 10 .
. 1 2
1 2
1 2 )
958 . ~1,-1,1,1,-2,0,0, 2
; .
1030 125
—1,-1,0.31, 0.31, —1.48, —1.48, 2.17, 2.17 1 2 5
11 3
1 1 3
1 25
1 25 S
1162 H<::>H —1, -1, 0.31, 0.31, —1.48, —1.48, 2.17, 2.17

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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Graph

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

H1 - VI (VT 1)

1 2 5 11
1032 | o] 1, -1, -1, 2, 0.47, 0, —1.81, 2.34 12 5 11
()
1 2 6 12
1 2 5 11
1164 1, -1, —1, 2, 0.47, 0, —1.81, 2.34 bz i o o
@
1 2
1105 I>0<:>0<I 0, -1, -1, —1, 2, 0.64, —2.32, 2.68 1 2 2
1 2 8
1 2 8
1 2 6
1 2 6
1235 0, -1, -1, -1, 2, 0.64, —2.32, 2.68
3392 X::X 0,0, 1,1, 4 (1= VA7), § (1+ V7). L 2
1 1
3 (-1=V17), 5 (VI7T-1) L2
1 3
[ )
13
3494 0,0, -1, 1,%(1—\/17),5(1+\/17), 1 3

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy



09

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

-1, -1,-1,-2,1,1,1, 2

Graph
13 11
3482 @ ~0.31, 148, —1, 1, —2.17, 0.14, —2.27, 3.13 -
13 11
12 7
3592 | LSS ~0.31, 1.48, —1, 1, —2.17, 0.14, —2.27, 3.13
3413 (I/\::I)' 0,-1,-1,1,-2,2, 1 (1 - \/17), 1 (1 + \/17) L3
12
1 2
1 3
13
3779 0,-1,-1,1,-2,2, 1 (1 - \/17), 1 (1 + \/17) 1 3
1 3
1270 1,1, -1,-2,1,1,1, 2 L o—eo
4, 7L, 74, T4y 4, 4y, 4y 1 2
1 2
1 2
o0 11
1 2 oo
v 1 2
1 2
5629

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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Graph

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

I>.<I>.<I 1 3 11
5684 _1, _17 _]-; _]-a 2, 17 _23 3 1 g 6
1 2 6
1 3 11
12 6
1 2 6
5718 -1, -1,-1,-1,2,1, -2, 3 S
1 4 10
1 2
3887 @ 1,1, 1, -2, -2, 0,0, 3 1 3
1 3
@ 1 0
13
13 : .
5753 .‘<I>°<I>‘ ~1,1,1, -2, -2, 0, 0, 3 b2
1 3 12
3899 -1,-1,1,1,-2,0,1 — V7,1 + V7 1 g 12
1 3 12
10 0
o 1 3 12
1 3 12
1 3 12
5755 % -1,-1,1,1,-2,0,1 = V7, 1+ V7 1 6 18 ° °

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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Graph

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

3886

-1,1,1,1, -2, -2, 1 — /2,1 + V2

5756

-1,1,1,1, -2, -2, 1 — /2,1 + V2

— =
(RN )

e
LW DN DN W

3888

~1,1,1, -2, —0.49, 0.60, —2.20, 3.09

9759

~1,1,1, -2, —0.49, 0.60, —2.20, 3.09

—_

—_

10 29
10 29
6 20

—
D Lo W [JSNOVE )

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

Graph
1 3 1
3903 —1,-1,1,1,2 —3,2+ 3, -2, —2 1 § 1§
1 3 13
11 7
1 3 13
1 3 13
5761 1 3 13
-1, -1,1,1,2—+3,24+ V3, =2, -2 1 7 19
1 3 10 32 102
6471 .&0 -1, -1,2,0.55, 0, —1.48, —2.29, 3.21 1 3 10 32 102
1 2 8 22 78
1 2 7 21 71
1 2 7 21 71
7012 _/_'ﬁ? ~1,-1,2,0.55, 0, —1.48, —2.29, 3.21
6479 s
—1-+2, -1, -1, 2,0.53, —1.34, 2.81, /2 — 1 1 3 8
1 39
1 2 6
1 2 6
1 3 8
7013 —1-+2, -1, -1, 2,0.53, —1.34, 2.81, V2 -1 1 3 8
1 39

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

)

Graph
13 11 :
6481 W 1, -1, -2, 2, —0.28, 0.56, —1.79, 3.52 1 ﬁ 11 ﬁ?
1 3 13 43
7015 o@ ~1, -1, -2, 2, —0.28, 0.56, —1.79, 3.52
1 3 1
6476 ~1, -1, -1, -1, 2, 1.15, —2.25, 3.10 1 § 18
1 2 6
1 3 10
1 3 10
7026 @ -1, -1, -1, —1, 2, 1.15, —2.25, 3.10
13 1
6478 ~1, -1, -1, -2, 2, 0.71, —1.49, 3.78 T
12 8
1 3 13
1 3 13
7028 ﬁ, 1, -1, -1, -2, 2,0.71, —1.49, 3.78

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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8 ek |

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

6486

-1, -1, -1, 2, —0.34, 0.66, —2.68, 3.36

)

7035

~1, -1, -1, 2, —0.34, 0.66, —2.68, 3.36

11 35
11 35
33
11 35

et b e
OO WWWWW
—_
—_

w W

6488

~1, -1, -1, 2, 0.48, —1.53, —2, 4.05

7037

—1, -1, -1, 2, 0.48, —1.53, —2, 4.05

14 53
14 53
15 55
53
14 53
16 66
16 66

= = = =
s 0 W W W Ww
—
o

10840

11,1, -2, -2, -2, % (3 - \/17), 1 (3 + \/17)

10851

11,1, -2, -2, -2, % (3— \/ﬁ) 1 (3+\/ﬁ)

[ Ll = N
o QOO RO W

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy



9G

Graph

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

5358 @ 717 717 717 17 ]-7 ]-a 73, 3 %

1

1

1

1

1

% 1

1716 ] I 717 717 717 ]-7 ]-a ]-a 73, 3

10867 0, -1,1, -2, 3 (3 - \/17), 1 (3 + \/17), % g
H-1- VT, (VIT-) !
13
13
1 4
nmt | B 0,-1,1,-2, 1 (3 v17), % (34 vT7), L

H-1- VI (VIT- )

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy



A"

Graph

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

10841

~1-+/2,1,1, -2, —0.32, —1.60, 3.92, V2 — 1

11742

~1-+2,1,1, -2, —0.32, —1.60, 3.92, V2 — 1

=
W W =W
—_
(@)}

10838

~1,1,1,-2,0,0, 1 (1 — \/41), 1 (1 + \/41)

11747

~1,1,1,-2,0,0, 1 (1 _ \/41), 1 (1 + \/41)

I = T
DO W s s s DO
—

S

10839

-1, -1,1, 1, -2, 0.21, —2.30, 4.08

11748

-1, -1, 1,1, -2, 0.21, —2.30, 4.08

)

— ==
DO R R RN
=
(@)

666€LVIN

s90149/\ g uo sydeucy oiydiowos|-4 | 4o siied ||y :xipuaddy
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Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

Graph
1 =
10849 ~1,1,1, —2, 0.60, —1.35, —2.39, 4.14 1 i % gS
1 4 17 69
1 4 17 69
1 4 17 69
1 3 14 56
11751 @‘ ~1,1,1, -2, 0.60, —1.35, —2.39, 4.14
1 3 15
10850 1,1, 1, -2, -2, 0.14, —1.64, 4.50 T
1 4 19
1 4 19
1 4 19
1 3 15
11752 % “1,1,1, -2, 2, 0.14, —1.64, 4.50
L0sg 1 3 13
—0.31, 148, —1, 1, =217, —0.72, —2.38, 4.10 L
1 4 17
14 17
14 17
1 3 13
11755 .@

—0.31, 1.48, —1, 1, —2.17, —0.72, —2.38, 4.10
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Graph

Eigenvalues

(main eigenvalues denoted in bold)

Walk Matrix

CDC(G) ~ CDC(H)

10897

0,-1,-1,1,1, -2, 1 — v/13, 1 + /13

11761

0,-1,-1,1,1, -2, 1 — v/13, 1 + /13

e e L e
OO i s e e

10898

~1,-1,-1,1,1, -2, -2, 5

11762

-1,-1,-1,1,1, -2, -2, 5

[ e U e
R R TSSO NS
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Index

f T X, see domain restriction
k-cycle, see cycle

n-cycle, see cycle
adjacency matrix, 7

bipartite, 7
bipartite double covering, see canonical dou-
ble covering

Birkhoff-von Neumann, 12

canonical double covering, 34
cardinality, 5
Cartesian product, see sets
CDC, see canonical double covering
comain, 25
complement, 8
complete graph, 8
component, 7
connected graph, 7
convex, 12

combination, 12
cospectral, 8

cycle, 7, 8

degree, 6
disconnected graph, 7

domain restriction, 5

even cycle, see cycle
functions, 5

Gauss’ lemma, 24
graph
complement, see complement
definition, 5
simple graph, 5
sum, see sum

union, see sum

Handshaking lemma, 8
Hermitian operator, 15
hiearchy, 40

induced subgraph, see subgraph

inner product, 15

inner product space, see inner product
isolated vertex, 8

isomorphic, see isomorphism

isomorphism, 6

main
angles, 25
eigenspace, 29
eigenvalue, 25
polynomial, 27

matrices, 5
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Index

natural numbers, 5
neighbour, 6
number of walks, 22

generating function, 27, 29

odd cycle, see cycle

orthogonal projection, 15

partite set, see bipartite
permutation, see permutation matrix
permutation matrix, 11
Perron—Frobenius, 26
polynomial, 23

content, 23

primitive, 23
power set, 5

projection, see orthogonal projection
restriction, see domain restriction

sets, b
Cartesian product, 5
k-subsets, 5
spectral theorem, 18
subgraph, 7

sum, 8
TF-isomorphism, 40
union, see sum

vertex
degree, 6

neighbour, see neighbour

walk, 6
k-walk, 6
walk matrix, 31

k-walk matrix, 31
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